

Echocardiographic assessment of unrepaired AVSD

Session 5. Atrioventricular Septal Defects

Multimodality Imaging in ACHD and PH

Annemien van den Bosch

Erasmus MC, Thoraxcenter, Rotterdam, The Netherlands

Erasmus MC 2 afuns

The cardinal feature of all AVSDs Erasmus MC

Echocardiographic assessment

- Common AV junction
 - AV valves

Level of shunting across the defect

Note: influences the clinical presentation

Unwedged position of the aorta (i.e. "gooseneck deformity").

Unrepaired AVSD at adult age

Functionally – all about shunting

Adults

 Complete AVSDs present either after repair or - if unrepaired – majority with Eisenmenger physiology

 Incomplete AVSD with fused superior and inferior bridging leaflets. No or very small VSD component

Clinical presentation at adult age Erasmus MC Uncorrected AVSD

- Atrial fibrillation
- Mitral valve regurgitation
- Reduced exercise capacity
- Screening

Indication for surgery

Indications	Class*	Level*
Complete AVSD:		
 Cardiac surgery must be avoided in patients with Eisenmenger physiology. In case of doubt, PVR testing is recommended For indication of intervention see also VSD (Section 4.2) 	m	c
Partial AVSD:		
Surgical closure should be performed in case of significant volume overload of the RV For further details see ASD (Section 4.1)	i	С

Significant volume load of RV

Indication for surgery

Indications	Class	Level*
Complete AVSD:		
 Cardiac surgery must be avoided in patients with Eisenmenger physiology. In case of doubt, PVR testing is recommended For indication of intervention see also VSD (Section 4.2) 	m	c
Partial AVSD:		
Surgical closure should be performed in case of significant volume overload of the RV For further details see ASD (Section 4.1)	i	С

Significant volume load of RV

AV valve regurgitation:		
Symptomatic patients with moderate to severe AV valve regurgitation should undergo valve surgery, preferably AV valve repair	į	С
Asymptomatic patients with moderate or severe left-sided valve regurgitation and LVESD >45 mm and/or impaired LV function (LVEF <60%) should undergo valve surgery when other causes of LV dysfunction are excluded	ì	B ³⁵
Surgical repair should be considered in asymptomatic patients with moderate or severe left-sided AV valve regurgitation who have signs of volume overload of the LV and a substrate of regurgitation that is very likely to be amenable for surgical repair	lla	C

Left-sided AV valve

Key points to include in echo reportions

- Complete or partial AVSD
- Size of atrial and ventricular components
- Direction of shunting for both components

Key points to include in echo reportions

- Complete or partial AVSD
- Size of atrial and ventricular components
- Direction of shunting for both components
- AV valve chordal anatomy (if considered for surgery, especially straddling)
- AV valve regurgitation

Key points to include in echo reporting

- Complete or partial AVSD
- Size of atrial and ventricular components
- Direction of shunting for both components
- AV valve chordal anatomy (if considered for surgery, especially straddling)
- AV valve regurgitation
- Estimate of pulmonary pressure
- Other associated lesions
- Ventricular size & function

Specific echo views Parasternal long axis RV inflow view

ASD with clearvisualization of AVvalves

Specific echo views Parasternal short axis RV inflow view

Another view to visualise ASD and VSD component

Intra-artial shunt Parasternal long axis RV inflow view

 Clear chordae attachments of the superior bridging leaflet on to the septum

Compleet vs incompleet AVSD Erasmus MC **Multiple views**

Left-sided AV valve Multiple jets

Incomplete AVSDLeft-sided AV valve

Left-sided AV valve Multiple jets

Note: Jet direction

Plan B: Use Biplane imaging

C

Right-sided AV valve regurgitation

Vmax TR: 2.9 cm/sec $\Delta P = 35$ mmHg

Direction of the regurgitation jet!

Unbalanced AVSD

Unwedged position of the aortansmus MC 2 afras mus MC 2 afras mus

Normal PSLAX?

LVOT obstruction

needs to be assessed

AP5CH

Don't forget the Aortic valve?

LV volume and EF

Shape of the LV is more spherical

Echocardiographic assessmentof repaired AVSD

Surgical AVSD correction

Residual lesions and complications

Residual shunt (atrial or ventricular level, LV-RA)

RV and LV dilatation and dysfunction

 Residual elevated pulmonary artery pressure

Residual lesions and complications

 Left-sided AV valve regurgitation, often through the closure line between superior and inferior bridging leaflet

Right-sided AV valve regurgitation

LVOT obstruction

Residual ASD: often multiple

Plan B

Plan B

SWEEP

Left-sided AV valve regurgitation

PSAX

- Valve morphology
- Mechanism and grade of regurgitation
- Evaluation of valve apparatus

Left-sided AV valve 3D vs 2D echo

- 3 leaflets of the left AV valve
- commissure between anterior and posterior bridging leaflets

Left-sided AV valve regurgitation and left-sided AV valve regurgitation

PLAX

The commissure between the superior and inferior bridging leaflets is visualised in the parasternal long axis

Residual AV-valve regurgitation Erasmus MC

Residual AV-valve regurgitation 2 alms

Casus

41 year old woman

History: 1984 surgical correction of incomplete AVSD

Note: Length 168 cm, weight 120 kg!

What is the mechanism of Left-sided AV valve regurgitation?

PSSAX

RV inflow

Right-sided AV valve

PSSAX

Vmax 5.2 m/s!

What do you think?

AP4CH

CW: Vmax 5.2 m/s

PW: Vmax 2.7 m/s

Shunt: What is its origin?

RV instroom PSSAX

Shunt between the LV and RA throungh the AV junction

Summary

 Echocardiography has a key role in the diagnosis, management and long-term follow-up

Use the echo protocol – especially for follow-up

- Echo gives excellent visualisation of anatomy
 - AV valves and regurgitation
 - ASD and VSD
 - hemodynamic evaluation

Summary

Postoperative follow-up

- First time at the ACHD outpatients clinic:
 - Complete work-up
 - Special attention for residual shunts, AV-valve regurgitation, LVOT obstruction and PH
- Short echo protocol:
 - LV dimensions and function (3D)
 - LA volumes
 - RVSP

