



**NHS Foundation Trust** 

A lifetime of specialist care

#### Assessment of Ventricular Function Dr. Alison Duncan MB BS BSc MRCP PhD

#### **Royal Brompton Hospital**



#### **Circumferential fibres**



#### Calculation of LVEF







- Modified biplane Simpson's rule
- Measures EDV and ESV (ml)
- Calculated EF (%) = EDV ESV \*100

EDV

#### **3D Assessment of LV function**







Nitkin et al Eur J Echo 2006

350

100

# LVEF and Outcome



Follow-up (days)

- LVEF >30%
- ---- LVEF ≤30%



# **Doppler Assessment of LV function**

**Doppler Assessment of LV function** 

- 1. Peak dP/dt
- 2. Stroke volume

3. Cardiac output



#### Calculation of peak dP / dt



# Clinical significance of dP/dt

| LV systolic<br>function      | Time for LV to<br>generate<br>32mmHg | dP/dt<br>(mmHg/sec) |
|------------------------------|--------------------------------------|---------------------|
| Normal                       | <27ms                                | >1200               |
| Mild-moderate<br>dysfunction | 27-40ms                              | 800-1200            |
| Severe<br>dysfunction        | >40ms                                | <800                |

# dp/dt



Mitral Regurgitation / 19



#### LV filling pre-pacing



#### LV filling with pacing and optimised AV delay





#### **Total Isovolumic Time**





Ejection time 300 ms, total ejection time per minute (0.30\*64) = 19.2 s/min Filling time 400 ms, total filling time per minute (0.40\*64) = 26.6 s/min

 $\times$  t-IVT = 60 - (19.2 + 26.6) = 14.6 s/min



Total isovolumic time at rest (s/min)

Ē



# Assessment of long axis function

# Longitudinal fibres







Normal

# Normal LV long axis



# Normal LV long axis velocity



Relation between long axis and LA & LV filling





#### Restrictive LV disease





#### **Intermittent LBBB**



Xiao et al. Br Heart J 1991;66:443—7

### Severe LV long axis asynchrony



#### Strain and Strain Rate

- Measures of myocardial deformation
- Uses
  - Assessment of resting LV and RV function
  - Myocardial viability during low-dose dobutamine infusion
  - Stress testing for ischaemia
  - Follow up of treatment response
- Limitations
  - Evidence base is limited
  - Technically challenging
  - Clinical availability
  - Susceptible to artefact





#### What to Measure?



Time to "relaxation"



Peak systolic S and time to peak systolic S



Peak systolic SR and time to peak systolic SR



Peak  $E \mbox{ and } A \mbox{ SR}$ 



Time to onset peak E SR



Peak systolic tissue velocity and time to peak systolic TV



# Assessment of regional wall motion abnormalities



#### 17-segment model







# Wall motion score analysis

#### **ASE criteria**

Schiller et al. J Am Soc Echocardiogr 1989;2:358-367

#### Wall motion score

- 1 normal (↑ systolic thickness >50%)
- 2 hypokinesis (↑ systolic thickness <40%)
- 3 akinesis (↑ systolic thickness <10%)
- 4 dyskinesis (outward systolic motion + wall thinning)
- 5 aneurysmal (outward systolic systole, wall thinning, diastolic deformation)



#### Viability During DSE Predicts Survival



- Group | viability + revascularisation Group || viability and no revascularisation
- Group III no viability + revascularisation
- Group IV no viability, no revascularisation

Afridi et al. JACC 1998;32:921-6



# M-mode assessment of LV function

# M-mode assessment of LV function

#### Amplitude

Velocities (shortening and lengthening)



#### Incoordination

# Minor axis



# Normal values for cardiac chambers

| M-mode parameter  | Range        |
|-------------------|--------------|
| LV EDD (cm)       | 4.0 - 5.6 cm |
| LV ESD (cm)       | 2.0 - 4.0 cm |
| IVS diastole (cm) | 0.7 – 1.2 cm |
| PW diastole (cm)  | 0.7 – 1.2 cm |

#### DCM





#### SAM



#### HCM





I....I....T...I....I.....



#### **CABG** for ischaemic DCM



Pre-op

Post-op

#### Severe MR



#### MV repair for MR









#### **AVR for AR**



Pre-op

Post-op



# M-mode mitral echogram for assessing LV function

#### Normal MV echogram





A2: a ortic valve closing MVO: mitral valve opening IVRT: isovolumic relaxation time (from A2  $\rightarrow$  MVO)

# **Restrictive filling**





# **Relation between IVRT and LVEDP**



Gibson et al. Heart 2003;89:231-238







# Assessing LV function: diastolic filling

#### **Examples of different LV filling patterns**



#### Worsening diastolic function



#### Restrictive filling pattern



- dominant E wave
- deceleration time <120 ms</p>
- short (<70ms) or even zero isovolumic relaxation time</p>
- reduced or absent A wave
- S3 is present, whose onset coincides with peak of the E wave
- acceleration and deceleration of the E wave are both increased



# Assessing LV ventricular function: BSE guidelines

# **Descriptive terms and statements**

| Ass | essing LV function       |                                           |
|-----|--------------------------|-------------------------------------------|
| 1.  | Cavity size              | Normal, dilated, small                    |
| 2.  | Wall thickness           | Normal, concentric LVH,<br>asymmetric LVH |
| 3.  | Ventricular mass         | Normal, borderline, increased             |
| 4.  | Ventricular shape        | Normal, aneurysmal, pseudoaneursymal      |
| 5.  | Global systolic function | Normal, low normal,                       |
|     |                          | decreased (mild, moderate,<br>severe)     |

# **Descriptive terms and statements**

| Ass | essing LV function         |                                                                    |
|-----|----------------------------|--------------------------------------------------------------------|
| 6.  | Regional systolic function | Normal, hyokinetic, akinetic, dyskinetic, scar, asynchronous       |
| 7.  | Diastolic filling          | Normal, abnormal (impaired relaxation, pseudonormal, restrictive), |
|     |                            | elevated LA / end-diastolic<br>pressure                            |
| 80  | LVOT                       | No obstruction, septal<br>hypertrophy, sub-aortic<br>membrane, SAM |
| 9.  | Thrombus                   | Present / absent                                                   |
| 10. | Mass (tumour)              | Present / absent                                                   |

#### **Diagnostic statements**

Appearances suggestive of....

- Myocardial infarction
- Hypertrophic cardiomyopathy
- Dilated cardiomyopathy
- Restrictive cardiomyopathy
- Hypertensive heart disease
- Infiltrative heart disease
- LV volume overload
- Other

#### Measurements and calculations

|          |                                            | Measure                       | Calculate |
|----------|--------------------------------------------|-------------------------------|-----------|
| <b>~</b> | LV cavity size<br>and systolic<br>function | LVEDD, LVESD,<br>LVEDV, LVESV | FS, EF    |
| 2.       | LV wall thickness                          | IVSd, IVSs, PWd,<br>PWs       |           |
| 3.       | LVOT                                       | LVOT diameter                 | LVOT area |
| 4.       | LVOT outflow                               | Vmax, VTI                     | SV        |
| 5.       | LV filling                                 | IVRT, EDT, E, A               | E:A ratio |



# Conclusion

#### In the assessment of LV function....

#### LV systolic and diastolic function are important

Forget not that the LV has both a minor axis and a long axis!