

Doppler-Gradients Bernoulli equation

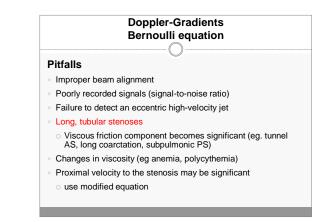
• Gradients can be estimated by the simplified Bernoulli equation:

$\Delta P = 4 \times v^2$

(v= flow velocity)

 Mean gradient is calculated by integrating the gradient over the entire systole :

ΔP mean= Σ 4v²/N

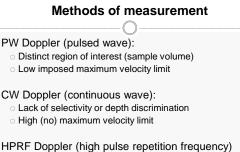


Doppler-Gradients Bernoulli equation

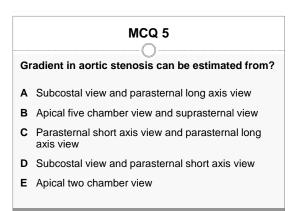
Assumptions:

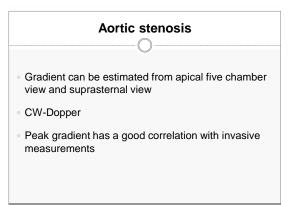
- velocity proximal to the stenosis is lower than 1 m/s and can be ignored
- \circ Flow acceleration and viscous friction is negligible
- When proximal velocity is >1.5 m/s, proximal velocity should be included (modified equation)

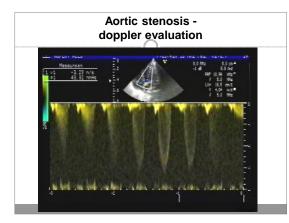
 $\Delta P \max = 4 (v^2 \max - v^2 \text{ proximal})$


sy	stolic velocity acro	MCQ 3 c valve stenosis, the maximum ss the aortic valve measured by CW e maximum peak gradient is?
A	100 mmHg	
в	120 mmHg	Simplified Bernoulli equation:
С	50 mmHg	$\Delta P = 4 \times v^2$
D	75 mmHg	
Е	None of the above	

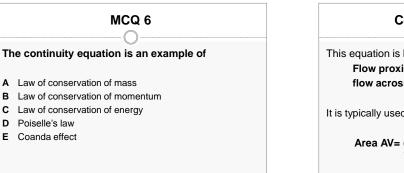
P	Peak gradients	
Value (m/s)	Gradient (mm Hg)	
• 2,0	15	
• 2,5	25	
• 3,0	35	
• 3,5	50	
• 4,0	65	
• 4,5	80	
• 5,0	100	
• 5,5	120	
• 6,0	145	

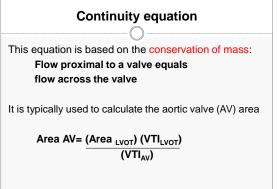

MCQ 4

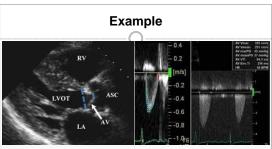

What is the maximum velocity limit for a 3 MHz CW doppler operating at 4 cm depth?


- A 40 cm/s
- **B** 200 cm/s
- C 2.5 m/s
- **D** 4 m/s
- E None of the above

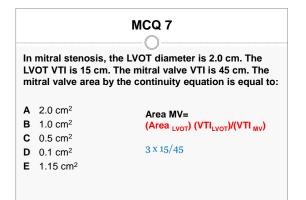
Several measuring sites

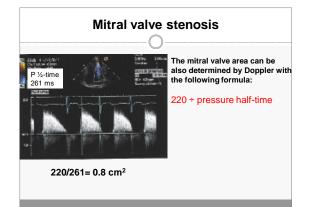


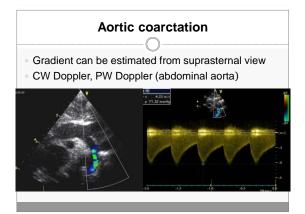

Aortic s	stenosis
Signal too low (underestimation of severity)	Signal too high (overestimation of severity)
 Tachycardia Reduced contractility Mitral regurgitation Atrial septal defect Aortic coarctation High peripheral resistance 	 Bradycardia Increased contractility Aortic regurgitation Ventricular septal defect PDA Low peripheral resistance

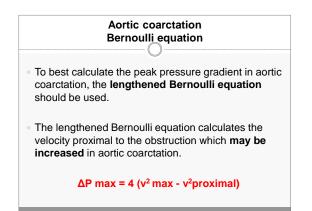

Special case - critical aortic stenosis

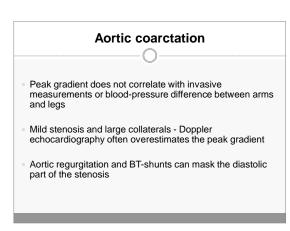
- Wide spectrum of LV size and function
- Dilated LV Borderline LV Hypoplastic LV Endocardial fibroelastosis
- Gradient across aortic valve depends on ventricular function and size of PDA
- Gradient across aortic valve depends on ASD size
- Flow across PDA depends on pulmonary and systemic resistance


 Aortic stenosis					
	Heart catheter peak-to-peak gradient	cw Doppler Vmax ACC/AHA ESC	Bernoulli peak instantaneous gradient	Bernoulli mean instantaneous gradient .ACC/AHA ESC	Echo aortic valve area .ACC/AHA ESC
Trivial					
Slight	< 30 mmHg	< 3 m/s	< 36 mmHg	< 25 mmHg	> 1.5 cm ² (> 1 cm ² /m ²)
Moderate	30-50 mmHg	3-4 m/s	36-64 mmHg	25-50 mmHg	1-1.5 cm ² (0.6-1 cm ² /m ²)
Severe	> 50 mmHg	> 4 m/s	> 64 mmHg	> 50 mmHg	<1 cm ² (< 0.6 cm ² /m ²)

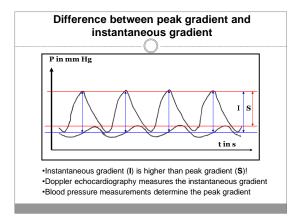


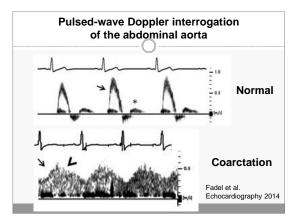


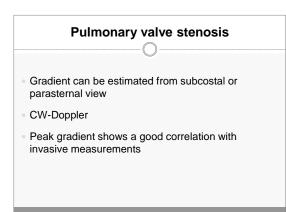

- 1) Calculate area of LVOT, A_{LVOT}= $\pi * r^2$
- 2) Measure LVOT velocity and/or VTI LVOT
- 3) Measure transvalvular velocity and/or VTIAV



	e formula that is used to calculate the peak essure gradient in aortic coarctation is:
A	4 (v² max - v² proximal)
в	4 (v ²)
С	220 ÷ PHT
D	CSA x VTI
	None of the above

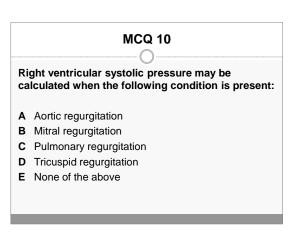


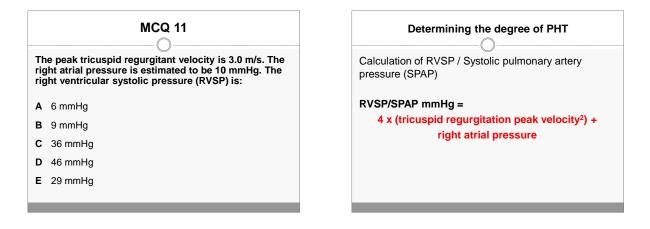


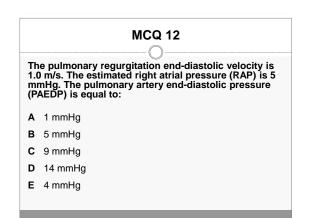


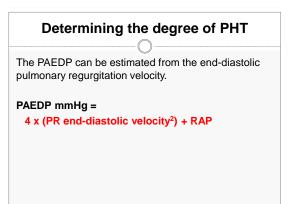
In patients with aortic valve stenosis/coarctation, the pressure gradients measured by Doppler include:

- A Maximum peak instantaneous gradient and peak-topeak gradient
- B Maximum peak instantaneous gradient
- C Peak-to-mean gradient
- D Peak-to-peak gradient
- E Minimum instantaneous flow rate



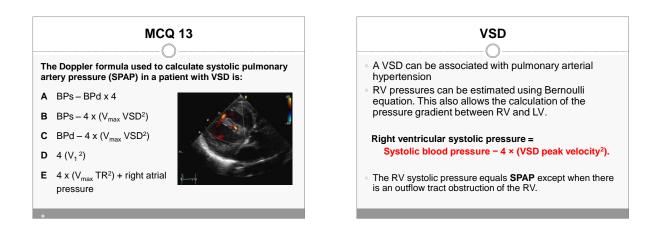

Pulmonary valve stenosis		
	Right Ventricular	Transvalvular
	Systolic Pressure (mm Hg)	Pressure Gradient (mm Hg)
Trivial	<25	<50
Mild	25-49	50-74
Moderate	50-79	75-100
Severe or critical	>80	>100

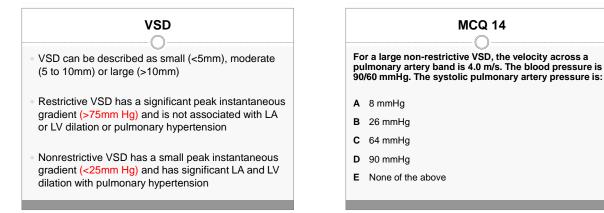

Tricuspid jet velocity, when tricuspid regurgitation is present, provides an estimate of right ventricular systolic pressure.

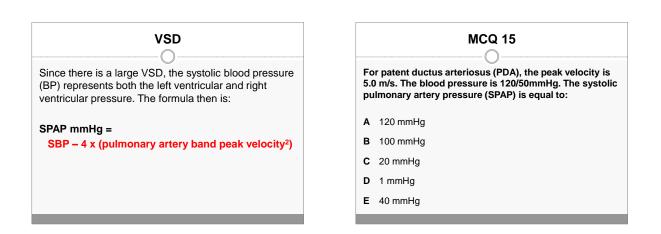


Determining the degree of PHT

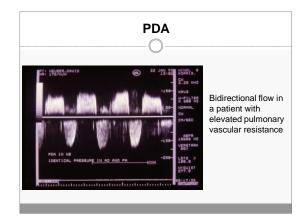
- Tricuspid jet velocity, when tricuspid regurgitation is present, provides an estimate of right ventricular systolic pressure (RVSP) utilizing the simplified Bernoulli equation
- RVSP may be also calculated when ventricular septal defect, or patent ductus arteriosus is present.

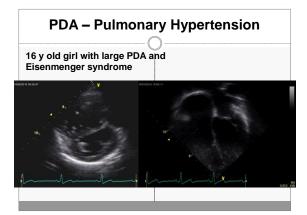


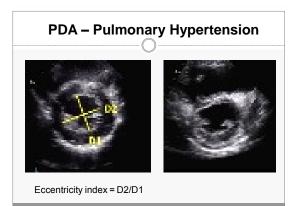



Determining the degree of PHT

- Right ventricular hypertrophy/dilatation
- Right atrial dilatation
- Flattening of the interventricular septum
- o Dilated inferior vena cava/hepatic veins
- Shortened RVOT acceleration time (PW Doppler)
- Tricuspid regurgitation (PW/CW/Colour flow Doppler)
- Pulmonary regurgitation (PW/CW/Colour flow Doppler)
- RVSP mmHg and PAEDP mmHg




PDA

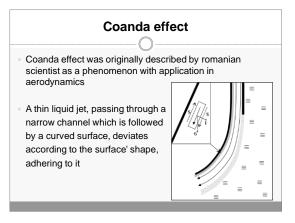

SPAP mmHg= BPs-4 x (Peak velocity of Blalock-Taussig shunt²)

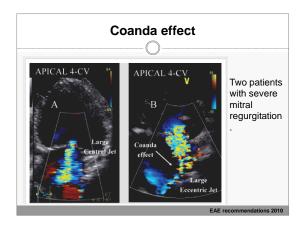
Continous left-to-right shunt in a patient with low pulmonary vascular resistance

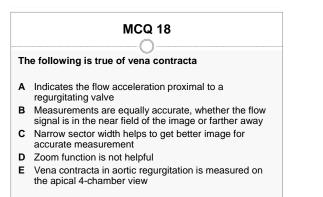
MCQ 16

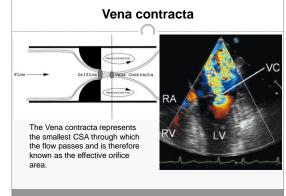
For a BT-shunt, the end diastolic velocity is 2.0 m/s. The blood pressure is 110/50 mmHg. The pulmonary artery end diastolic pressure (PAEDP) is:

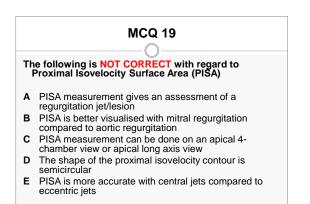
- A 2 mmHg
- B 34 mmHg
- **C** 50 mmHg
- **D** 110 mmHg
- E 66 mmHg


PAEDP mmHg =

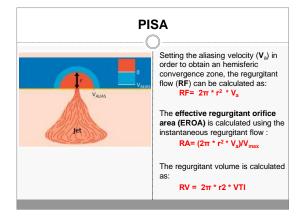

BPd-4 x (PDA end diastolic velocity²)

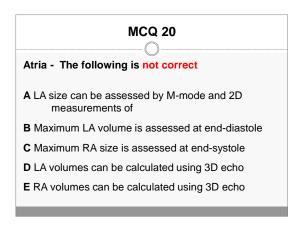

MCQ 17

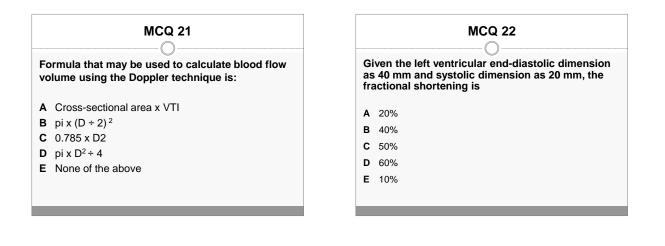

The following is true of the Coanda effect **EXCEPT**

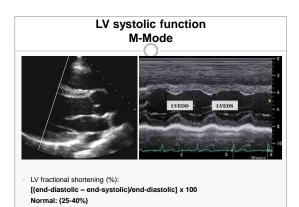

- A Refers to the tendency of a stream of fluid to follow a convex surface, rather than a straight line
- B Can be seen with aortic and mitral regurgitation jets
- C Is a phenomenon noted on colour flow Doppler imaging
- D Usually indicates a less severe jet of regurgitation
- E Can give a false impression when jet area is used for assessing severity of the regurgitation

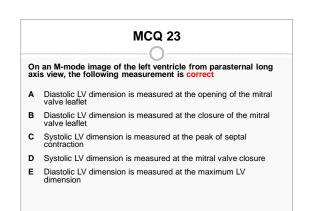


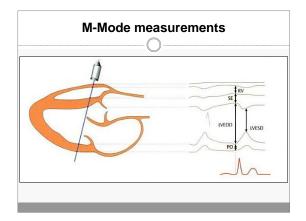


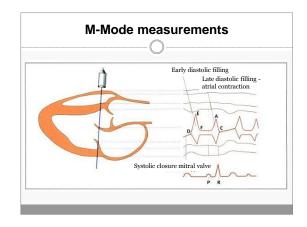


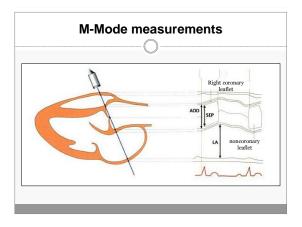


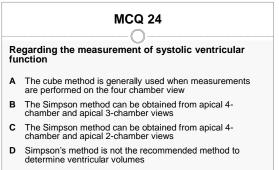


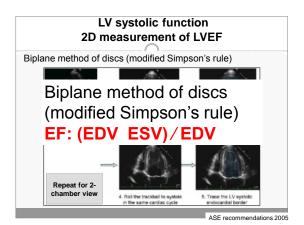












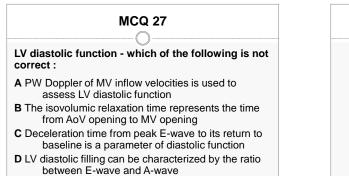
E None of the above

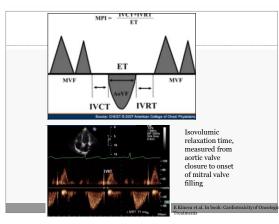
MCQ 25 The formula used to calculate stroke volume (SV) by Doppler is: A EDV – ESV B CSA x VTI C (CSA x VTI) x HR D (CSA x VTI) x HR ÷ BSA E None of the above

LV systolic function

SV is calculated as the product of the cross-sectional area of the valve or vessel through which the blood is flowing and the velocity time integral (VTI):

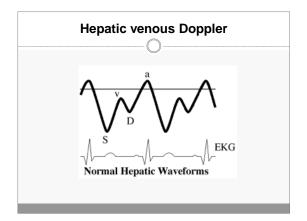
SV = CSA x VTI

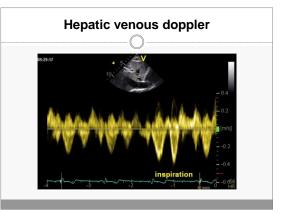

The cardiac output (CO) can then be obtained by multiplying stroke volume by the heart rate:

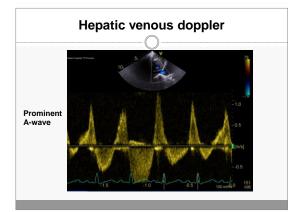

CO = SV x HR

MCQ 26

Left ventricular end-diastolic pressure (LVEDP) may be calculated when the following condition is present:

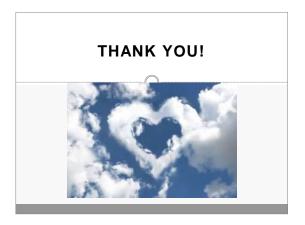

- A Aortic regurgitation
- Calculations: $LVEDP = BPd - 4V^{2}(AR)$ $LAP = BPs - 4V^{2}(MR)$ **B** Mitral regurgitation
- C Pulmonary regurgitation
- D Tricuspid regurgitation
- E None of the above





	LV diasto		
MV E wave peak velocity	Apical 4-chamber	Diastole	LV diastolic function
MV A wave peak velocity	Apical 4	Diastole	LV diastolic function
MV A wave duration	Apical 4	Time from beginning to end of A wave	LV diastolic function
MV deceleration time	Apical 4	Time from E wave peak velocity to return to baseline	LV diastolic function
Isovolumic relaxation time (IVRT) [†]	Apical 3-chamber	Time from AoV closure to MV opening with simultaneous CW Doppler of LV outflow and inflow	LV diastolic function

	MCQ 28
	epatic venous doppler – which of the following is
A	The patterns are similar to pulmonary vein flow
В	Impaired ventricular relaxation goes ahead with hepatic flow reversal with exspiration
	An S/D ratio of < 0.5 is noted with restriction
С	
C D	During exspiration the S-wave is greater than the D-wave


Hepatic venous Doppler

Restrictive Cardiomyopathie

- Prominent atrial and ventricular reversal
- Increased prominence of reversal waves with respiration

Cardiac tamponade

- During inspiration the S-wave is greater than the D-wave
- During expiration there is a very limited or absent D-wave with prominent reversals.
- These flow variations may precede chamber collapse

